DPBS(PG) College, Anoopshahr <u>BCA IV Semester</u> <u>Subject: Computer Graphics</u> <u>Paper Code: 401</u> 2D Transformations in Computer Graphics

• Transformation is a process of modifying and re-positioning the

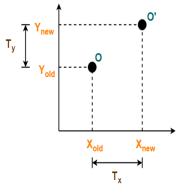
- existing graphics.
- 2D Transformations take place in a two dimensional plane. In computer graphics, various transformation techniques are-
- 1. Translation
- 2. <u>Rotation</u>
- 3. <u>Scaling</u>
- 4. <u>Reflection</u>
- 5. <u>Shear</u>

<u>Translation</u> In Computer graphics, 2D Translation is a process of moving an object from one position to another in a 2-D plane.

Consider a point object O has to be moved from one position to another in a 2D plane.

Let-

- Initial coordinates of the object O = (X_{old}, Y_{old})
- New coordinates of the object O after translation = (X_{new}, Y_{new})
- Translation vector or Shift vector = (T_x, T_y)
- T_x defines the distance the X_{old} coordinate has to be moved.
- $T_{\rm y}$ defines the distance the $Y_{\rm old}$ coordinate has to be moved.



This translation is achieved by adding the translation coordinates to the old coordinates of the object as-

- $X_{new} = X_{old} + T_x$ (This denotes translation towards X axis)
- $Y_{new} = Y_{old} + T_y$ (This denotes translation towards Y axis)

In Matrix form, the above translation equations may be represented as-

 $\begin{bmatrix} X_{new} \\ Y_{new} \end{bmatrix} = \begin{bmatrix} X_{old} \\ Y_{old} \end{bmatrix} + \begin{bmatrix} T_x \\ T_y \end{bmatrix}$

- The homogeneous coordinates representation of (X, Y) is (X, Y, 1).
- Through this representation, all the transformations can be performed using matrix / vector multiplications.

The above translation matrix may be represented as a 3 x 3 matrix as-

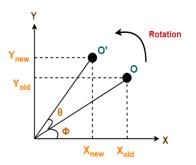
X _{new} Y _{new}	=	1 0	0 1	T _x T _y	x	X _{old} Y _{old}	
1		0	0	1		1	

<u>Rotation</u> In Computer graphics, 2D Rotation is a process of rotating an object with respect to an angle in a two dimensional plane.

Consider a point object O has to be rotated from one angle to another in a 2D plane.

Let-

- Initial coordinates of the object $O = (X_{old}, Y_{old})$
- Initial angle of the object O with respect to origin = Φ
- Rotation angle = θ
- New coordinates of the object O after rotation = (X_{new}, Y_{new})



This rotation is achieved by using the following rotation equations-

- $X_{new} = X_{old} \times \cos\theta Y_{old} \times \sin\theta$
- $Y_{new} = X_{old} \times \sin\theta + Y_{old} \times \cos\theta$

In Matrix form, the above rotation equations may be represented as-

X new	_	cosθ	-sinθ	v	X _{old}
Y _{new}		sinθ	cosθ	^	Y _{old}

For homogeneous coordinates, the above rotation matrix may be represented as a 3×3 matrix as-

X new		cose	-sinθ	0		X old
Ynew	=	sinθ	cosθ	0	X	Y _{old}
[1]		0	0	1		1

<u>Scaling</u> In computer graphics, scaling is a process of modifying or altering the size of objects.

- Scaling may be used to increase or reduce the size of object.
- Scaling subjects the coordinate points of the original object to change.
- Scaling factor determines whether the object size is to be increased or reduced.
- If scaling factor > 1, then the object size is increased.
- If scaling factor < 1, then the object size is reduced. Consider a point object O has to be scaled in a 2D plane.

Let-

- Initial coordinates of the object $O = (X_{old}, Y_{old})$
- Scaling factor for X-axis = S_x
- Scaling factor for Y-axis = S_y
- New coordinates of the object O after scaling = (X_{new}, Y_{new}) This scaling is achieved by using the following scaling equations-
- $X_{new} = X_{old} \times S_x$
- $Y_{new} = Y_{old} \times S_y$

In Matrix form, the above scaling equations may be represented as-

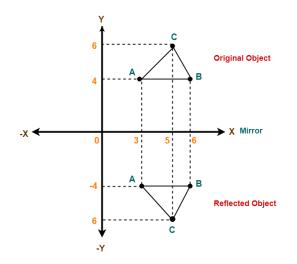
$$\begin{bmatrix} X_{new} \\ Y_{new} \end{bmatrix} = \begin{bmatrix} S_{X} & 0 \\ 0 & S_{Y} \end{bmatrix} X \begin{bmatrix} X_{old} \\ Y_{old} \end{bmatrix}$$

For homogeneous coordinates, the above scaling matrix may be represented as a 3×3 matrix as-

X _{new}	s _x	0	0		X _{old}
Y new =	0	s _y	0	X	Y _{old}
	0	0	1		1

Reflection

- Reflection is a kind of rotation where the angle of rotation is 180 degree.
- The reflected object is always formed on the other side of mirror.
- The size of reflected object is same as the size of original object. Consider a point object O has to be reflected in a 2D plane.



Let-

- Initial coordinates of the object $O = (X_{old}, Y_{old})$
- New coordinates of the reflected object O after reflection = (X_{new}, Y_{new})

Reflection On X-Axis:

This reflection is achieved by using the following reflection equations-

- $X_{new} = X_{old}$
- $Y_{new} = -Y_{old}$

In Matrix form, the above reflection equations may be represented as-

$$\begin{bmatrix} X_{new} \\ Y_{new} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} X \begin{bmatrix} X_{old} \\ Y_{old} \end{bmatrix}$$

For homogeneous coordinates, the above reflection matrix may be represented as a 3 x 3 matrix as-

$$\begin{bmatrix} X_{new} \\ Y_{new} \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} X \begin{bmatrix} X_{old} \\ Y_{old} \\ 1 \end{bmatrix}$$

Reflection On Y-Axis:

This reflection is achieved by using the following reflection equations-

• $X_{new} = -X_{old}$

5|Page Pankaj Kumar Gupta, Head, BCA Department

• $Y_{new} = Y_{old}$

In Matrix form, the above reflection equations may be represented as-

$$\begin{bmatrix} X_{new} \\ Y_{new} \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} X \begin{bmatrix} X_{old} \\ Y_{old} \end{bmatrix}$$

For homogeneous coordinates, the above reflection matrix may be represented as a 3×3 matrix as-

$$\begin{bmatrix} X_{new} \\ Y_{new} \\ 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} X \begin{bmatrix} X_{old} \\ Y_{old} \\ 1 \end{bmatrix}$$

<u>Shearing</u> In Computer graphics, 2D Shearing is an ideal technique to change the shape of an existing object in a two dimensional plane.

In a two dimensional plane, the object size can be changed along X direction as well as Y direction.

So, there are two versions of shearing-

1. Shearing in X direction

2. Shearing in Y direction

Consider a point object O has to be sheared in a 2D plane.

Let-

- Initial coordinates of the object $O = (X_{old}, Y_{old})$
- Shearing parameter towards X direction = Sh_x
- Shearing parameter towards Y direction = Shy
- New coordinates of the object O after shearing = (X_{new}, Y_{new}) <u>Shearing in X Axis-</u>

Shearing in X axis is achieved by using the following shearing equations-

- $X_{new} = X_{old} + Sh_x \times Y_{old}$
- $Y_{new} = Y_{old}$

In Matrix form, the above shearing equations may be represented as-

$$\begin{bmatrix} X_{new} \\ Y_{new} \end{bmatrix} = \begin{bmatrix} 1 & Sh_{X} \\ 0 & 1 \end{bmatrix} X \begin{bmatrix} X_{old} \\ Y_{old} \end{bmatrix}$$

For homogeneous coordinates, the above shearing matrix may be represented as a 3×3 matrix as-

$$\begin{bmatrix} X_{new} \\ Y_{new} \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ Sh_{x} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} X \begin{bmatrix} X_{old} \\ Y_{old} \\ 1 \end{bmatrix}$$

Shearing in Y Axis

Shearing in Y axis is achieved by using the following shearing equations-

- $X_{new} = X_{old}$
- $Y_{new} = Y_{old} + Sh_y \ge X_{old}$

In Matrix form, the above shearing equations may be represented as-

$$\begin{bmatrix} X_{new} \\ Y_{new} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ Sh_y & 1 \end{bmatrix} X \begin{bmatrix} X_{old} \\ Y_{old} \end{bmatrix}$$

For homogeneous coordinates, the above shearing matrix may be represented as a 3 x 3 matrix as-

$$\begin{bmatrix} X_{new} \\ Y_{new} \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & Sh_y & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} X \begin{bmatrix} X_{old} \\ Y_{old} \\ 1 \end{bmatrix}$$