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Table 3.1 Some molecular data for diatomic molecules determined by
infra-red spectroscopy '

Vibration Anharmonicity Force constant Internuclear
Molecule (ecm™") constant, x, (Nm™1) distance r_, (nm)
HF 41385 0-0218 966 0-0927
HClt 29906 0-0174 516 0-1274
HBr 2649-7 00171 412 0-1414
HI 2309-5 0-0172 314 0-1609
CO 21697 0:0061 1902 0-1131
NO 1904-0 0:0073 1595 0-1151
ICIt 384-2 0-0038 238 0-2321

t Data refers to the **Clisotope.

Although we have ignored transitions from v = 1 to higher statcs, we
should note that, if the temperature is raised or if the vibration has a
particularly low frequency, the population of the v = 1 state may become
appreciable. Thus at, say, 600 K (i.e,, about 300°C) N,.,/N,-, becomes
exp (—2'4) or about 0-09, and transitions from v = 1 to v = 2 will be some
10 per cent the intensity of those from v = 0 to v = 1. A similar increase in
the excited state population would arise if the vibrational frequency were
500 cm ™! instead of 1000 cm ~!. We may calculate the wavenumber of this
transition as:

4. vy = 1— v =2, Av = + 1, normally very weak,
Ae = ‘%0_)( - 6‘}"\:0 ®, — {1}2-(Dc = Zi-xc (Dc}

=a,(l —4x,) cm™! (3.15d)

Thus, should this weak absorption arise, it will be found close to and at
slightly lower wavenumber than the fundamental (since x, is small and
positive). Such weak absorptions are usually called hot bands since a high
temperature is one condition for their occurrence. Their nature may be
confirmed by raising the temperature of the sample when a true hot band
will increase in intensity.

We turn now to consider a diatomic molecule undergoing simultaneous
vibration and rotation.

3.2 THE DIATOMIC VIBRATING-ROTATOR

We saw in Chapter 2 that a typical diatomic molecule has rotational energy
separations of 1-10 cm ™!, while in the preceding section we found that the
vibrational energy separations of HCl were nearly 3000 cm~'. Since the
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energies of the two motions are so different we may, as a first approx-
imation, consider that a diatomic molecule can execute rotations and vibra-
tions quite independently. This, which we shall call the Born-Oppenheimer
approximation (although, cf. Eq. (6:1), this strictly includes electronic
energies), is tantamount to assuming that the combined rotational-
vibrational energy is simply the sum of the separate energies:

Etotal = Erol. + Evib. GOUICS)

lE:lolal = Eror, + Evib. (Cm- l) (316)

We shall see later in what circumstances this approximation does not apply.
Taking the separate expressions for ¢, and ¢, from Eqs (2.26) and
(3.12) respectively, we have:

€10 =5 + &,
=BJJ +1)—DJ*J + 1)) + HI*(J + 1) + ...
+ v+ o, — x (v + 1?0, cm! (3.17)

Initially, we shall ignore the small centrifugal distortion constants D, H, etc.,
and hence write '

Eiotal = EJ, v = BJ(J + l) + (U “F é)d’e - xe(v + %)2(7)3 (318)

Note, however, that it is not logical to ignore D since this implies that we
are treating the molecule as rigid, yet vibrating! The retention of D would
have only a very minor effect on the spectrum.

The rotational levels are sketched in Fig. 3.5 for the two lowest vibra-
tional levels, v = 0 and v = 1. There is, however, no attempt at scale in this
diagram since the separation between neighbouring J values is, in fact, only
some 1/1000 of that between the v values. Note that since the rotational
constant B in Eq. (3.18) is taken to be the same for all J and v (a conse-
quence of the Born-Oppenheimer assumption), the separation between two
levels of given J is the same in the v = 0 and v = 1 states.

It may be shown that the selection rules for the combined motions are
the same as those for each separately; therefore we have:

Av= 41, 4+ 2, etc. AJ = + 1 (3.19)

Strictly speaking we may also have Av = 0, but this corresponds to the
purely rotational transitions already dealt with in Chapter 2. Note carefully,
however, that a diatomic molecule, except under very special and rare cir-
cumstances, may not have AJ = 0; in other words a vibrational change must
be accompanied by a simultaneous rotational change.

In Fig. 3.6 we have drawn some of the relevant energy levels and
transitions, designating rotational quantum numbers in the v = 0 state as J”
and in the v = 1 state as J'. The use of a single prime for the upper state
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Figure 3.5 The rotational energy levels for two different vibrational states of a diatomic
molecule.

and a double for the lower state is conventional in all branches of spectros-
copy.

Remember (and cf. Eq. (2.20)) that the rotational levels J” are filled to
varying degrees in any molecular population, so the transitions shown will
occur with varying intensities. This is indicated schematically in the spec-
trum at the foot of Fig. 3.6.

An analytical expression for the spectrum may be obtained by applying
the selection rules (Eq. (3.19)) to the energy levels (Eq. (3.18)). Considering
only the v = 0— v = 1 transition we have in general:

ASJ'.I.} . CJ".H=1 — &y p=0
=BJ(J' + 1)+ 130, — 243x, 0, — {BJ'(J" + 1) + {0, — ix, )}
=@, +BU — IV +J"+1) cm-!

where, for brevity, we write @, for @ (1 — 2x,).

We should note that taking B to be identical in the upper and lower
vibrational states is a direct consequence of the Born-Oppenheimer
approximation—rotation is unaffected by vibrational changes.
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Figure 3.6 Some transitions between the rotational-vibrational energy levels of a

molecule together with the spectrum arising from them.

Now we can have:

1. AJ = +1,1ie, J'=J"+1orJ' —J" = +1; hence

Aey , =@, +2BUJ" + )em™"  J =0,1,2, ...

2. A = —l,ie,J"=J +1lorJ' —J'= —1;and

Agy, =@, —2B(J' + )em™' 7 =0,1,2, ...

diatomic

(3.20a)

(3.20b)
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These two expressions may conveniently be combined into:
Aty y = Vypeer, = @, +2Bm cm™! m=+1 +2... (3.200)

where m, replacing J” +'1 in Eq. (3.20a) and J' + 1 in Eq. (3.20b) has
positive values for AJ = +1 and is negative if AJ = + 1. Note particularly
that m cannot be zero since this would imply values of J' or J” to be —1.
The frequency @, is usually called the band origin or band centre.

Equation (3.20c), then, represents the combined vibration-rotation
spectrum. Evidently it will consist of equally spaced lines (spacing = 2B) on
each side of the band origin @,, but, since m # 0, the line at @, itself will not
appear. Lines to the low-frequency side of @,, corresponding to negative m
(that is, AJ = —1) are referred to as the P branch, while those to the
high-frequency side (m positive, AJ = +1) are called the R branch. This
apparently arbitrary notation may become clearer if we state here that later,
in other contexts, we shall be concerned with AJ values of 0 and + 2, in
addition to + 1 considered here; the labelling of line series is then quite
consistent:

Lines arising from AJ = -2 —1 0 +1 +2
called: 0 P Q R S branch

The P and R notation, with the lower J (J") value as a suffix, is illustrated
on the diagrammatic spectrum of Fig. 3.6. This is the conventional notation
for such spectra.

It is readily shown that the inclusion of the centrifugal distortion con-
stant D leads to the following expression for the spectrum:

Ae=7¥

'spcct.

=@, +2Bm—4Dm*> cm™' (m=+1,+2 +3,..)
(3.21)

But we have seen in Chapter 2 that B is some 10 cm ™! or less, while D is
only some 0-01 per cent of B. Since a good infra-red spectrometer has a
resolving power of about 0-5 cm™! it is obvious that D is negligible to a
very high degree of accuracy.

The anharmonicity factor, on the other hand, is not negligible. It affects
not only the position of the band origin (since @, = @,(1 — 2x.)), but, by
extending the selection rules to include Av = + 2, & 3, etc,, also allows the
appearance of overtone bands having identical rotational structure. This is
illustrated in Fig. 3.7(a), where the fundamental absorption and first over-
tone of carbon monoxide are shown. From the band centres we can calcu-
late, as shown in Sec. 1.3, the equilibrium frequency @, and the
anharmonicity constant x,.
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