f COMMUNICATING WITH APPLICATIONS
U

The applet is a script that uses a chat component. However, since such a

tandard component in every browser, we modified our browser to sety
sta :
spplications so it can delegate com

chat component is not a

p communication with other

mands for unknown components. An alternative would be to compile
quch components into the browser but that would lead to a large monolithic br

owser what we consider as
rther inflexible.

Instead, our browser communicates with remote applications to dele

gate functionality. In this paper
we will use the term remote applications for applications that are runnin

g on some host (possibly other
than the local host) with which a browser can communicate.
WWW server
Q ------- > HTTP
," \\ —» Hush Talk

\
Browser@ Browser

> o

Chat Chat
Fig. 4. After Requesting the chat page it looks

In our Hush browser, a connection with a remote application is set-up after the page is loaded and the
browser only serves as a viewer for the interface of the remote application.

Scanned with CamSca



The WWW server has no active role except for initiation, see fig. If two users have rgquested the chat
page, two chat applications will be running and the interface will be visible embedded in ar\ HTML page,
This example illustrates the use of new functionality that the browser nor the WWW server itself support.
The WWW is used only as a general access-point for using applications on the network and to have the
web browser act as a viewer for the application interface.

Hush Talk — communication on top of HTTP

For communication between a browser and a remote application , an additional communication
protocol is needed. Such a protocol should at least have the following properties ; it should be fast, have
two way communication with flexible message passing and some form of session management.

The first two properties are needed for efficiency reasons and to keep up the performance of the
system. The last property is important for cooperative work so applications that participate in cooperative
work can reach and be aware of each other throughout a session. The stateless HTTP protocol is not suited
for this kind of continuous communication, nor does it offer any session management. Therefore we
developed a new communication protocol called Hush Talk, currently based on Sun's Tool Talk.

Tool Talk is a message based system for inter-application communication which is available for UNIX
platforms as part of the standard Solaris 2.x distribution. The actual communication in Tool Talk is done by
RPCs which make it faster than the HTTP protocol since connections are not opened and closed all the
time. It also provides the notion of a session that manages connected applications and message delivery.
Choosing another protocol than HTTP also has the advantage that the HTTP server load is not increased.

With Hush Talk we tried to handle communication in an object-oriented style i.e., by calling handler
objects with events rather than calling callback functions. In our example we use Hush Talk to set up

communication between chat applications and for the communication between the browser and remote
application.

Scanned with CamSca



