3.1.3 The Anharmonic Oscillator

Real molecules do not obey exactly the laws of simple harmonic motion:
real bonds, although elastic, are not so homogeneous as to obey Hooke’s
law. If the bond between atoms is stretched, for instance. there comes a
point at which it will break—the molecule dissociates into atoms. Thus
although for small compressions and extensions the bond may be taken as
perfectly elastic, for larger amplitudes—say greater than 10 per cent of the
bond length—a much more complicated behaviour must be assumed.
Figure 3.3 shows, diagrammatically, the shape of the energy curve for a

typical diatomic molecule, together with (dashed) the ideal, simple harmo-
nic parabola.
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Figure 3.3 The Morse curve: the energy of a diatomic molecule undergoing anharmonic
extensions and compressions.

A purely empirical expression which fits this curve to a good approx-
imation was derived by P. M. Morse, and is called the Morse function:

E=D,[1—exp {alr, —n}]* (3.11)

where a is a constant for a particular molecule and D, is the dissociation
energy.



When Eq. (3.11) is used instead of Eq. (3.2) in the Schrodinger equation,
the pattern of the allowed vibrational energy levels is found to be:

g, =@+ 3o, —(v+P°o,x, ecm™! (el Lok in) . £5:18)

where @, is an oscillation frequency (expressed in wavcn}lmbers) whicl? we
shall define more closely below, and x, is the corresponding anharmnn!c::ty
constant which, for bond stretching vibrations, is always small and positive
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Figure 3.4 The allowed vibrational energy levels and some transitions between them for a
diatomic molecule undergoing anharmonic oscillations.

(= + 0:01), so that the vibrational levels crowd more closely together with
increasing v. Some of these levels are sketched in F 1g. 3.4,

It should be mentioned that Eq. (3.12), like (3.11), is an approximation
only; more precise expressions for the energy levels require cubic, quartic,
etc., terms in (v + 4) with anharmonicity constants V., z,, etc., ranidly
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diminishing in magnitude. These terms are important only at large values of
v, and we shall ignore them.

INFRA-RED SPECTROSCOPY 79

If we rewrite Eq. (3.12), for the anharmonic oscillator, as:

g, = @, {1 — x,(v + D}v + 3 (3.13)

and compare with the energy levels of the harmonic oscillator (Eq. (3.6)), we
see that we can write:

{auc. - u-"'c{l e I,(U - %)} (314)

Thus the anharmonic oscillator behaves like the harmonic oscillator but
with an oscillation frequency which decreases steadily with increasing v. If
we now consider the hypothetical energy state obtained by putting v = —34
" (at which, according to Eq. (3.13), ¢ = 0) the molecule would be at the
equilibrium point with zero vibrational energy. Its oscillation frequency (in
cm ') would be:

Woge. = We

Thus we see that @, may be defined as the (hypothetical) equilibrium oscil-
lation frequency of the anharmonic system—the frequency for infinitely
small vibrations about the equilibrium point. For any real state specified by
a positive integral v the oscillation frequency will be given by Eq. (3.14).
Thus in the ground state (v = 0) we would have:

[‘aﬂ - (E]t(l o i'xr) cm ™!

and
- - i'(-')!{l i 4 i'x:} cm

and we see that the zero point energy differs slightly from that for the
harmonic oscillator (Eq. (3.7)).
The selection rules for the anharmonic oscillator are found to be:

Av=++1+2 +13,...

Thus they are the same as for the harmonic oscillator, with the additional
possibility of larger jumps. These, however, are predicted by theory and
observed in practice to be of rapidly diminishing probability and normally
only the lines of Av= + 1, + 2, and + 3, at the most, have observable
intensity. Further, the spacing between the vibrational levels is, as we shall
shortly see, of order 10° cm ™! and, at room temperature, we may use the
Boltzmann distribution (Eq. (1.12)) to show

N 6:63 x 1073* x 3 x 10'° x 10°
= exp { —
e 1-38 x 10~ 23 x 300

~ exp (—4-8) = 0-008.

In other words, the population of the v = 1 state is nearly 0-01 or some one
per cent of the ground state population. Thus, to a very good approx-
imation, we may ignore all transitions originating at v = 1 or more and



restrict ourselves to the three transitions:

l.v=0—-v=1, Av = + 1, with considerable intensity.
A =g,.4 — 8 uo
= (1 + Do, — x(1 +P’, - ({0, — $)*x,®,)
=@/l —2x,) cm™! (3.15a)
2. v=0-0v=2 Av = +2, with small intensity.

Ae = (2 & i.)fbf gy xf(z . & 5)1-—' " {i‘d’, mr &)zx' {I"e}
=2m/(1 —3x,) cm™! (3.15b)
J.v=0-v=23 Av= +3, with normally negligible intensity.

Ae = (3 T ‘i’)(l-)' e {i‘d"l e (i)zxi d’i}
=31 —4x,) cm™! (3.15¢)

These three transitions are shown in Fig. 3.4. To a good approximation,
since x, & 0-01, the three spectral lines lie very close to @,, 2@,, and 3@, .
The line near @, is called the fundamental absorption, while those near 20,
and 3@, are called the first and second overtones, respectively. The spectrum
of HCI, for instance, shows a very intense absorption at 2886 cm ', a
weaker one at 5668 cm ~', and a very weak one at 8347 cm . If we wish to
find the equilibrium frequency of the molecule from these data, we must
solve any two of the three equations (cf. Egs. (3.15)):

(1 — 2x,) = 2886
20 (1 — 3x,) = 5668
3ol —4x,) = 8347 cm !

and we find @, = 2990 cm ™!, x, = 0-0174. Thus we see that. whereas for
the ideal harmonic oscillator the spectral absorption occurred exactly at the
classical vibration frequency, for real, anharmonic molecules the observed
fundamental absorption frequency and the equilibrium frequency may dif-
fer considerably.

The force constant of the bond in HCl may be calculated directly from
Eq. (2.22) by inserting the value of @, :

k=4n*®lc’y N m™!
=516 Nm™!

when the fundamental constants and the reduced mass are inserted. These
data, together with that for a few of the very many other diatomic mol-
ecules studied by infra-red techniques, are collected in Table 3.1.
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Table 3.1 Some molecular data for diatomic molecules determined by
infra-red spectroscopy

Vibration Anharmonicity Force constant Internuclear

Molecule (cm™') constant, x, (Nm™Y) distance r,, (nm)
HF 41385 00218 966 0-0927
HClt 2990-6 00174 516 01274
HBr 26497 0-0171 412 01414
HI 2309-5 00172 314 0-1609
CO 2169-7 0-0061 1902 01131
NO 1904-0 0-0073 1595 01151
1Clt 3842 0-0038 238 0-2321

t Data refers to the **Clisotope.

Although we have ignored transitions from v = 1 to higher statcs, we
should note that, if the temperature is raised or if the vibration has a
particularly low frequency, the population of the v = 1 state may become
appreciable. Thus at, say, 600 K (i.e,, about 300°C) N,.,/N,., becomes
exp (—2-4) or about 0-09, and transitions from v = 1 to v = 2 will be some
10 per cent the intensity of those from v = 0 to v = 1. A similar increase in
the excited state population would arise if the vibrational frequency were
500 cm ! instead of 1000 cm ~'. We may calculate the wavenumber of this
transition as:

4. v=1—v =2, Av = + 1, normally very weak,

Ae = 2%(-0, o &xf{af o {1&‘6), - 2*11.{;},}
=a,fl —4x,) cm™! (3.15d)

Thus, should this weak absorption arise, it will be found close to and at
slightly lower wavenumber than the fundamental (since x, 1s small and
positive). Such weak absorptions are usually called hot bands since a high
temperature is one condition for their occurrence. Their nature may be
confirmed by raising the temperature of the sample when a true hot band
will increase in intensity.

We turn now to consider a diatomic molecule undergoing simultaneous
vibration and rotation.



