6.1.4 Dissociation Energy and Dissociation Products

Figure 6.4(a) and (b) shows two of the ways in which electronic excitation
can lead to dissociation (a third way called predissociation, will be con-
sidered in Sec. 6.1.7). Part (a) of the figure represents the case, previously
discussed, where the equilibrium nuclear separation in the upper state is
considerably greater than that in the lower. The dashed line limits of the
Morse curves represent the dissociation of the normal and excited molecule
into atoms, the dissociation energies being Dg and Dj from the v = 0 state
in each case. We see that the total energy of the dissociation products (i.c.,
atoms) from the upper state is greater by an amount called E,, than that of
the products of dissociation in the lower state. This energy is the excitation
energy of one (or rarely both) of the atoms produced on dissociation.

We saw in the previous section that the spectrum of this system consists
of some vibrational transitions (quantized) followed by a continuum (non-
quantized transitions) representing dissociation. The lower wavenumber
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Figure 6.4 Illustrating dissociation by excitation into (a) a stable upper state, and (b) a contin-
uous upper state,

limit of this continuum must represent just sufficient energy to cause disso-
ciation and no more (i.e., the dissociation products separate with virtually
zero kinetic energy) and thus we have

v(continuum limit) = Ds + Eex. cm—l (67)

and we sce that we can measure D}, the dissociation energy, if we know
E.,., the excitation energy of the products, whatever they may be. Now,
although the excitation energy of atoms to various electronic states is
readily measurable by atomic spectroscopy (cf. Chapter 5), the precise state
of dissociation products is not always obvious. There are several ways in
which the total energy Dg + E,, may be scparated into its components,
however; here we shall mention just two.

Firstly, thermochemical studies often lead to an approximate value of
Dg and hence, since Dy + E,, is accurately measurable spectroscopically, a
rough value for E,, is obtained. When the spectrum of the atomic products
is studied, it usually happens that only one value of excitation energy
corresponds at all well with E,, . Thus the state of the products is known,
E,, measured accurately, and a precise value of Dy deduced.

Secondly, if more than one spectroscopic dissociation limit is found,
corresponding to dissociation into two or more different states of products
with different excitation energies, the separations between the excitation
energies are often found to correspond closely with the separations between
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only one set of excited states of the atoms observed spectroscopically. Thus
the nature of the excited products and their energies are immediately
known.

In Fig. 6.4(b) we illustrate the case in which the upper electronic state is
unstable: there is no minimum in the energy curve and, as soon as a mol-
ecule is raised to this state by excitation, the molecule dissociates into
products with total excitation energy E,, . The products fly apart with
kinetic energy E,;..;c Which represents (as shown on the figure) the excess
energy in the final state above that needed just to dissociate the molecule.
Since E,;,.. is not quantized the whole spectrum for this system will ex-
hibit a continuum the lower limit of which (if observable) will be precisely
the energy D} + E., . As before, if E,, can be found from a knowledge of
the dissociation products, Dy can be measured with great accuracy.

We shall see in Sec. 6.2.1 what sort of circumstances lead to the mini-
mum in the upper state (Fig. 6.4(a)) on the one hand, or the continuous
upper state (Fig. 6.4(b)) on the other.

In many electronic spectra no continua appear at all-—the internuclear
distances in the upper and lower states are such that transitions near to the
dissociation limit are of negligible probability—but it is still possible to
derive a value for the dissociation energy by noting how the vibrational
lines converge. We have already seen in Chapter 3 (cf. Eq. (3.12)), that the
vibrational energy levels may be writien:

e, = + Do, — x (v + 1?0, cm™! - (6.8)
and so the separation between neighbouring levels, Ag, is plainly:
Ae=¢,,, — ¢,
=@,{1 —2x (v + 1)} em™! (6.9)

This separation obviously decreases linearly with increasing v and the disso-
ciation limit is reached when A¢— 0. Thus the maximum value of v is given
by v,..., Where:

(Dc{l - 2xc(vmu. + l)} =0

ie.,

L 1 (6.10)

Ul’!‘lll =
> 8

We recall that the anharmonicity constant, x,, is of the order 102, hence
Upmax. 18 about 50.

We saw in Sec. 3.1.3, that two vibrational transitions (in the infra-red)
were sufficient to determine x, and @,. Thus, an example given there for
HCI yielded @, = 2990 cm ™!, x, = 0-0174. From Eq. (6.10) we calculate
Vs, = 27-74 and the next lowest integer is v = 27. Replacing v = 27, @, =
2990 cm ~! and x, = 0:0174 into Eq. (6.8) gives the maximum value of the
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vibrational energy as 42890 cm ™! or 513:0 kJ mol~". This is to be com-
pared with a more accurate value of 427-2 kJ mol~! evaluated thermo-
chemically.

The discrepancy between these two figures arises from two causes.
Firstly, the infra-red data only allows us to consider two or three vibra-
tional transitions (the fundamental plus the first and second overtones). The
clectronic spectrum, as we have seen, shows many more vibrational lines (in
fact the number is limited not by quantum restrictions, but by the Franck-
Condon principle) and we shall get a better value of Dg if we make use of
this extra data. Secondly, we have assumed that Eq. (6.8) applies exactly
even at high values of v; this is not true because cubic and even quartic

- terms become important at this stage. Because of these, A¢ decreases more
rapidly than Eq. (6.9) suggests.

Both these points may be met if we plot the separation between vibra-
tional transitions, A¢, as observed in the electronic spectrum, against the
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Figure 6.5 Birge-Sponer extrapolation to determine the dissociation energy of the iodine
molecule, I,. ( Taken from the data of R. D. Verma, J. Chem. Phys., vol. 32, p. 738 (1960), by
kind permission of the author,)
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vibrational quantum number. Initially, Eq. (6.9) will apply quite accurately
and the graph will be a straight line which may be extrapolated either to
find v,,,, or, since the dissociation energy itself is simply the sum of all the
increments Ag¢ from v = 0 t0 v = ., the area under the A¢ versus v graph
gives this energy directly. Such a linear extrapolation was first suggested by
Birge and Sponer and is usually given their name.

On the other hand, if extensive data are available about a set of
electronic—vibration transitions, the graph of Ae¢ versus v will, at high v,
begin to fall off more sharply as cubic and quartic terms become significant.
In this case the most accurate determination of dissociation energy is ob-
tained by extrapolating the smooth curve and finding the area benecath it.
Figure 6.5 shows this process for data on iodine vapour given by R. D.
Verma, J. Chem. Phys., 32, 738 (1960).

In absorption spectra it is normally the series of lines originating at
v” = 0 which is observed (cf. Fig. 6.1). Thus the convergence of the ievels in
the upper state and hence the dissociation energy of that state is normally
found. While this in itself is of great interest, particularly since molecules in
excited states usually revert to the ground state within fractions of a micro-
second, the dissociation energy in the ground state can be found quite easily
provided, as before, the dissociation products and their excitation energy
are known. Thus, in Fig. 6.4(a), if we know E_, (from atomic spectroscopy),
and D} (from Birge-Sponer extrapolation), and if we can measure the
cnergy of the (0, 0) transition either directly or by calculation from the
observed energy levels, we have:

» = energy of (0, 0) + Dy — E,,, cm™! (6.11)
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