7.6 REPRESENTATION OF NOISE USING
ORTHONORMAL COORDINATES
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In our discussion of the frequency-domain representation of noise we saw that a noise proce
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be represented as a sum of orthonormal functions. These orthonormal functions are the sif
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. in which n; is the coefficient of the i component and
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Jormal functions,
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! n that Interval, nojse n(t) is

n(r) = 2!1,415 )]
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evaluated ip the usual manner, that is

n; = J. g n(fut) d
i i; f
0 * (7.103)
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If the noise n(r) 1s a Gaussian random process with a mean value of zerg then n, is a Gauss;
i aussian ran-

dom variable with a zero mean valye,
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nn;= -[0 n(u(f) dt ju n(l}uj{.l) dA (7.104a)
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where 7 and A are dummy variable of integration. We now take the ensemble average of both Sides
of Eq. (7.104b). Interchanging the order of averaging and integrating as in Sec. 7.4, we have

E(nn) = _[:" mJ‘nT dAEn(Dn(A)]u (1) (A) (7.105)

Since the noise process is ergodic, Eq. (6.141) applies and we have that the autocorrelation of the
process is

R(1 — A) = E|n(0)n(A)] (7.106)
Further, assuming white noise of power spectral density G(f) = 1/2 we have, as in Eq. (7.73) that
R(t - A)=ni2 6t = A) (7.107)

From Eqs (7.104), (7.105), and (7.106) we have that
E(nn) = J:r d.-_[: dA /2 8t = AuNufA) (7.108)
N2 =y (7.109)
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ability of error to make use of the
s Eq. 7.102 where the form a
of zero and a variance of /2.
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